
Final Project - Parallel Image Processing
Luca Cazzola

Student-ID: 248716
Trento, Italy

luca.cazzola-1@studenti.unitn.it

Christian Dalvit
Student-ID: 249988

Trento, Italy
christian.dalvit@studenti.unitn.it

I. INTRODUCTION

The objective of this final project is to parallelize image
filtering algorithms and to measure and analyze various met-
rics of the algorithm. This report provides a description of
the problem setting, algorithms, and experimental results of
the implementation. The code used for this project is made
available through a public Github repository.

II. PROBLEM DESCRIPTION

When applying a filter to an n-dimensional signal (n ∈ N+)
one of the most common and effective operation is the
convolution. In a 2-dimensional scenario, which is the case for
images, operations such as like blurring (Fig. 1), sharpening
and edge extraction can be performed using convolutions
[2, 3]. Some deep learning architectures also massively take
advantage of convolution to automatically extract significant
features from images [4, 7]. The wide-ranging applications
of image convolution underscore the need for an efficient
implementation of the convolution operation. For a filter w
of size n × m and an image f the convolution operation is
defined as :

w(x, y) ∗ f(x, y) =
m−1∑
s=0

n−1∑
t=0

w(s, t) · f(x− s, y − t)

(a) Original (b) Blurred

Fig. 1: Example of Gaussian blur filter applied with convolu-
tion operator

A. Design choices & assumptions

We assume m,n to be odd numbers and that m = n. Hence,
we are only considering square filters with odd dimensions.
We further assume that the filter w has only one channel and

that the image f can have multiple channels. In case of a
multichannel image f , the filter w is applied to each channel
separately. Since the convolution is not well-defined along
the image boundary, a boundary-handling strategy needs to
be implemented. We decided to implement zero padding for
all algorithms in this project. This means that we assume all
pixels outside the image to be zero. The computation for a
single output pixel (w ∗ f)(x, y) depends only on the filter w
and the neighborhood of f(x, y). This makes the convolution
operation suitable for parallelization. As most images have
multiple channels as in the case of RGB domain, the way
channels are stored in the memory matters.

Fig. 2: Interleaved Format

Storing closely channels corresponding to the same pixel
is generally referred to as interleaved format. It is effective
when performing operations across multiple channels due to
their spatial locality. It is the most used format when it comes
to general image processing (not specifically convolution).
Popular frameworks such as OpenCV as well as formats such
as PNG adopt such structure.

Fig. 3: Planar Format

A radically different choice is to separate channels, so that
spatial locality is preserved at channel level. This is called
planar format and is more effective when operations are
independent between different channels, which is generally
true in the case of convolution. It’s worth noting that there
exist cases such as the (1×1) convolution [4], which is largely
used in deep learning and aims to specifically compute over

1

https://github.com/LuCazzola/cuda2dConvolution


the channel dimension compact the number of channels. For
this reason and for the sake of simplicity, we adopted an
interleaved format, being aware it will probably worsen
performances.

III. STATE OF THE ART

Most used 2D convolution strategies mainly fall into 3
categories :

1) Overlap & Add : follows the divide and conquer prin-
ciple. The input image is divided into smaller patches
which are processed independently. Once patches are
evaluated, results are aggregated [1]. Solutions falling
into this category try to make clever use of GPU memory
sub-system to parallelize processing as much as possible.

2) Convolution on Fourier domain : Leveraging on the
fact convolution becomes element-wise multiplication in
the Fourier domain, both the image and the given kernel
can be transformed in Fourier domain, apply convolution
and then transform back to the original space. The main
issue with such method is the inputs dimensionalities,
which might be too large.

3) GEMM based convolution : Motivated by the fact
GPUs are heavily optimized for matrix multiplication,
the convolution is reframed to fit such paradigm and is
computed as GEMM [6].

All our implemented solutions fall into the overlap & add
category, which is probably the most simplistic, but yet can
be effective.

IV. IMPLEMENTATIONS

In the following, the different algorithms implemented
during this project are described and their memory access
pattern is discussed. Note that we dropped the for-loops
for the channels of the image from the pseudocode for better
readability.

A. CPU Algorithm

The CPU implementation is used as a baseline for bench-
marking the various GPU algorithms. (Algo. 1) is a straight-
forward implementation of the mathematical convolution def-
inition. The filter K is applied sequentially to every pixel in
the image of I . The obvious drawback of this implementation
is that no parallel processing is leveraged for a more efficient
computation.

Algorithm 1 CPU implementation
Input: Image I , Kernel K
Output: Image O

1: kc ← (dim(K)− 1)/2
2: for u = 0 to height(I)− 1 do
3: for v = 0 to width(I)− 1 do
4: sum← 0
5: for i = 0 to dim(K)− 1 do
6: for j = 0 to dim(K)− 1 do

7: pu ← u− kc + i
8: pv ← v − kc + j
9: if pu, pv ∈ I then

10: sum← sum+K(i, j) · I(pu, pv)
11: end if
12: end for
13: end for
14: O(u, v)← sum
15: end for
16: end for

B. GPU Naive

(Algo. 2) is a naive implementation for parallel convolution
computation. The idea behind the algorithm is the same as in
(Algo. 1). But instead of processing each pixel sequentially,
all pixels are computed in parallel. Each thread applies the
kernel to all image channels. Although this algorithm should
compute the convolution more efficiently, there is still room
for improvement. For example, the (Algo. 2) stores the whole
image and the kernel in the global memory of the GPU. This
is not optimal in terms of memory access time.

Algorithm 2 Naive CUDA kernel
Input: Image I , Kernel K
Output: Image O

1: u← blockIdx.x · blockDim.x+ threadIdx.x
2: v ← blockIdx.y · blockDim.y + threadIdx.y
3:
4: if u, v ∈ I then
5: sum← 0
6: for i = 0 to dim(K)− 1 do
7: for j = 0 to dim(K)− 1 do
8: pu ← u− kc + i
9: pv ← v − kc + j

10: if pu, pv ∈ I then
11: sum← sum+K(i, j) · I(pu, pv)
12: end if
13: end for
14: end for
15: O(u, v)← sum
16: end if

Note: If a variable is not defined consider the last declaration among previous
algorithms

C. GPU Shared Memory

The GPU Shared Memory implementation in (Algo. 3)
leverages the shared memory of the GPU. Computation re-
quires many repeated accesses to the kernel and the image
patch. Faster memory access time for the kernel and the image
patch should benefit the performances. In (Algo. 3) an image
patch and the kernel are copied into shared memory. An
image patch is composed of an inner patch plus a padding
component.

2



Fig. 4: Patch structure example (3×3 kernel)

The kernel is centered on all inner patch pixels. Padding
is needed when evaluating the inner patch edges, as they’re
required by the kernel. Although (Algo. 3) takes advantage of
the shared memory, there are some drawbacks. The workload
is not distributed equally among the threads, as the first thread
of each block must copy the kernel. Furthermore, the kernel
gets copied into the shared memory once per thread block.
This is redundant work, because the kernel is static and does
not change during the computation.

Algorithm 3 Shared memory CUDA kernel
Input: Image I , Kernel K
Output: Image O

1: OUT_DIM← blockDim.x− 2kc
2: col← blockIdx.x · OUT_DIM+ threadIdx.x− kc
3: row ← blockIdx.y · OUT_DIM+ threadIdx.y − kc
4:
5: __shared__ Is
6: Ks ← get_kernel_address(blockDim.x)
7: if threadIdx.x = 0 ∧ threadIdx.y = 0 then
8: kernel_to_shared_mem(K, Ks)
9: end if

10: image_to_shared_mem(I , Is, threadIdx, row, col)
11: __syncthreads()
12:
13: rowt ← threadIdx.y − kc + i
14: colt ← threadIdx.x− kc + j
15: if row, col ∈ I ∧ colt, rowt ∈ [0,OUT_DIM] then
16: sum← 0
17: for i = 0 to dim(K)− 1 do
18: for j = 0 to dim(K)− 1 do
19: sum← sum+Ks(i, j) · Is(rowt+ i, colt+ j)
20: end for
21: end for
22: O(u, v)← sum
23: end if

Note: If a variable is not defined consider the last declaration among previous
algorithms

D. GPU Shared Memory using Constant Memory

Since the kernel values do not change during the computa-
tion and the kernel size is relatively small, the kernel can be
placed in the GPU’s constant memory. Constant memory is a
special part of the GPU’s global memory, that is cached for
efficient accesses [5]. (Algo. 4) implements the same strategy

as (Algo. 3), but instead of moving the kernel into shared
memory, the kernel is copied into constant memory before the
kernel execution. Note that the kernel is not part of the input,
because in CUDA the kernel stored in constant memory Kc

acts as a global variable. (Algo. 4) resolves some drawbacks of
the previous implementation. The workload is distributed more
equally among the threads, and the kernel is copied only once
to the GPU. Since all threads have the same access pattern for
Kc, the access of values in Kc should be efficient [5].

Algorithm 4 Shared + constant memory CUDA kernel
Input: Image I
Output: Image O

1: __shared__ Is
2: image_to_shared_mem(I , Is, threadIdx, row, col)
3: __syncthreads()
4:
5: colt ← threadIdx.x− kc
6: rowt ← threadIdx.y − kc
7: if row, col ∈ I ∧ colt, rowt ∈ [0,OUT_DIM] then
8: sum← 0
9: for i = 0 to dim(K)− 1 do

10: for j = 0 to dim(K)− 1 do
11: sum← sum+Kc(i, j) · Is(rowt+ i, colt+ j)
12: end for
13: end for
14: O(u, v)← sum
15: end if

Note: If a variable is not defined consider the last declaration among previous
algorithms

E. GPU Shared Memory using Cache

(Algo. 5) implements a hybrid approach, by using both
global and shared memory, while the kernel is in constant
memory. Instead of using a smaller output dimension of each
thread block as in (Algo. 3) and (Algo. 4), (Algo. 5) has the
same output dimension as the thread block. When computing
the convolution, image pixels which are inside the image
patch processed by the thread block are loaded from shared
memory. The other pixels are loaded from global memory.
One can observe that in (Algo. 4) the padding of an image
patch overlaps with the inner patch of its neighboring patches.
Therefore, there is a significant probability, that the padding of
an image patch is already in L2 cache [5]. Hence, the padding
can be efficiently accessed, without extra coping the padding
into shared memory for every image patch.

Algorithm 5 Cached shared + constant memory CUDA
kernel
Input: Image I
Output: Image O

1: col← blockIdx.x · blockDim.x+ threadIdx.x
2: row ← blockIdx.y · blockDim.y + threadIdx.y
3:

3



4: __shared__ Is
5: image_to_shared_mem(I, Is, threadIdx, row, col)
6:
7: __syncthreads()
8:
9: if col, row ∈ I then

10: sum← 0
11: for i = 0 to dim(K)− 1 do
12: for j = 0 to dim(K)− 1 do
13: pu ← threadIdx.x− kc + i
14: pv ← threadIdx.y − kc + j
15: if pu, pv ∈ [0, blockDim.x] then
16: sum← sum+Kc(i, j) · Is(pu, pv)
17: else
18: if pu, pv ∈ I then
19: sum← sum+Kc(i, j) · I(pu, pv)
20: end if
21: end if
22: end for
23: end for
24: O(u, v)← sum
25: end if

Note: If a variable is not defined consider the last declaration among previous
algorithms

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Benchmarks are done on the University of Trento DISI
department cluster

CPU setup :
• Model name : Intel(R) Xeon(R) Gold 6238R CPU @

2.20GHz, cores : 28
• Cache : 32K (L1), 1024K (L2), 39424K (L3)

GPU setup :
• Model name : NVIDIA A30
• Architecture : Ampere - 8.0 compute capability
• L2 cache size : 25165824 bytes
• Peak memory bandwidth : 933 GB/s
• Peak FP32 : 10.3 TF

B. Results

We’re interested in measuring both the effective bandwidth
(GB/s) and FLOPS (TF/s) of our implementations. Each
algorithm is tested multiple times to capture mean and standard
deviations of metrics at varying input size and kernel sizes.
Each input to the algorithms is a randomly generated FP32
matrix of size Matrix size × C, with C fixed to 3 to simulate
real image’s number of channels. Each kernel is executed with
fixed block size of (16×16).

Benchmark results (Fig. 6) show clear trends: as expected,
the CPU implementation is totally out of scale w.r.t. the GPU
ones and not worth discussing. All GPU kernels reach a
stationary point as the L2 cache is filled in between 220 and 222

matrix size steps. The best performing implementation among
all is (Algo. 4) which unexpectedly performs very close to
(Algo. 3). It’s true that loading the kernel multiple times is
unnecessary overhead as it’s fixed, but considering the filter is
constantly being accessed it is going to be almost permanently
available on L2 cache. Another consideration is that kernel
filters on many applications (especially deep learning [4])
are generally small, which makes the number of values to
load tiny. Convolution becomes more and more expensive to
compute as the kernel size increases, as shown in (Fig. 5).
Small kernels tilt the problem towards memory management
efficiency, larger kernels instead makes it more arithmetically
challenging:

(a) Effective bandwidth

(b) FLOPS

Fig. 5: Cost of kernel sizes on (Algo. 4)

N.B. The X axis doesn’t include the C factor for readability purposes

When having a wide kernel becomes necessary in order to
capture wider domain regions, a trade-off consists into using
small to medium dilated kernels [8] which allow to “look
further” while saving computational resources.

Going back to (Fig. 6), underwhelming but not unexpected
are the performances of (Algo. 5) which likely heavily suffers
from our choice of using an interleaved format (Fig. 2).

VI. CONCLUSION

Considering our best configurations for both effective band-
width (∼400 GB/s) and FLOPS (∼1.4 TF/s) it’s evident we’re
still far from theoretical peaks, which suggests there’s very
much room for improvement. If we had to further continue
this project, we would change our image storage formats to a
planar one (Fig. 3) and test some GEMM based implementa-
tions, which seems promising.

4



(a) Kernel (3×3) - Effective bandwidth (b) Kernel (3×3) - FLOPS

(c) Kernel (5×5) - Effective bandwidth (d) Kernel (5×5) - FLOPS

(e) Kernel (7×7) - Effective bandwidth (f) Kernel (7×7) - FLOPS

(g) Kernel (9×9) - Effective bandwidth (h) Kernel (9×9) - FLOPS

Fig. 6: Benchmark

N.B. The X axis doesn’t include the C factor for readability purposes

5



VII. CONTRIBUTIONS

The team started by splitting some of the core tasks :

Luca Cazzola (248716)
• Backbone structure supporting the project (taken partially

from previous homeworks)
• Functions to handle PNG files based on the official libpng

library
• Benchmarking & results plotting components

Christian Dalvit (249988)
• Research of theoretical material supporting the project
• Implementation of convolution algorithms (1, 2, 3)

Even though the team split the workload, members con-
stantly reached one with another to share opinions, make
design choices and resolve issues. The report compilation and
non-listed parts have been performed equally by both team
members.

REFERENCES

[1] Karel Adámek et al. “GPU Fast Convolution via the
Overlap-and-Save Method in Shared Memory”. In: ACM
Transactions on Architecture and Code Optimization 17.3
(Aug. 2020), pp. 1–20. ISSN: 1544-3973. DOI: 10.1145/
3394116. URL: http://dx.doi.org/10.1145/3394116.

[2] D. Forsyth and J. Ponce. Computer Vision: A Modern
Approach. Pearson, 2012. ISBN: 9780136085928.

[3] R.C. Gonzalez and R.E. Woods. Digital Image Pro-
cessing. Addison-Wesley world student series. Addison-
Wesley, 1992. ISBN: 9780201508031.

[4] Kaiming He et al. Deep Residual Learning for Image
Recognition. 2015. arXiv: 1512.03385 [cs.CV]. URL:
https://arxiv.org/abs/1512.03385.

[5] Wen-mei W. Hwu, David B. Kirk, and Izzat El Hajj.
Programming Massively Parallel Processors. 4th Edition.
Elsevier, 2023. ISBN: 9780323984638.

[6] Mickael Seznec et al. “Computing Large 2D Convolu-
tions on GPU Efficiently with the im2tensor Algorithm”.
In: Journal of Real-Time Image Processing 19 (2022),
pp. 1035–1047. DOI: 10 . 1007 / s11554 - 022 - 01240 - 0.
URL: https://doi.org/10.1007/s11554-022-01240-0.

[7] Sanghyun Woo et al. ConvNeXt V2: Co-designing and
Scaling ConvNets with Masked Autoencoders. 2023.
arXiv: 2301.00808 [cs.CV]. URL: https : / /arxiv.org/
abs/2301.00808.

[8] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser.
Dilated Residual Networks. 2017. arXiv: 1705 . 09914
[cs.CV]. URL: https://arxiv.org/abs/1705.09914.

6

http://www.libpng.org/pub/png/libpng.html
https://doi.org/10.1145/3394116
https://doi.org/10.1145/3394116
http://dx.doi.org/10.1145/3394116
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/10.1007/s11554-022-01240-0
https://doi.org/10.1007/s11554-022-01240-0
https://arxiv.org/abs/2301.00808
https://arxiv.org/abs/2301.00808
https://arxiv.org/abs/2301.00808
https://arxiv.org/abs/1705.09914
https://arxiv.org/abs/1705.09914
https://arxiv.org/abs/1705.09914

	Introduction
	Problem Description
	Design choices & assumptions

	State of the art
	Implementations
	CPU Algorithm
	GPU Naive
	GPU Shared Memory
	GPU Shared Memory using Constant Memory
	GPU Shared Memory using Cache

	Experimental Results
	Experimental Setup
	Results

	Conclusion
	Contributions

