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Abstract – The long-tailed data distribution pose a
significant challenge in computer vision, a situation that
is amplified in low-resource settings. In this paper
we first categorize available literature which has shown
appealing results facing such contexts. After that, some
specific techniques being the bases for further studies are
introduced in more detail. We conclude with an overview
of the experiments we will conduct about emerging failures
cases and class behaviours.

I. INTRODUCTION

Deep learning has demonstrated significant success in
numerous computer vision tasks; however, its dependency on
large, balanced datasets poses a challenge for some real-world
applications suffering from long-tailed data distributions
phenomena. In such scenarios, a small subset of "head"
classes is well represented, while the "tail" ones remain
underrepresented. This imbalance leads to incomplete data
representation, ambiguous decision boundaries, and poor
generalization, particularly for tail classes.

Fig. 1. The long-tailed data distribution

The ability to address this issue effectively is critical,
especially in low-resource settings where acquiring additional
data is infeasible or impractical.

II. BACKGROUND

In few-shot learning (FSL) the goal is to achieve
performance using only a defined number of instances
for each category. This situation is naturally intrinsic in low-
resource contexts. Moreover, adopting FSL style of training
encourages the model to pay more attention to tail classes,
thanks to the fact that the distribution became balanced across
all categories. This is still an effective approach even if the
model has been pre-trained using a statistically different
distribution of data, as in [1].

Going ahead with the various solutions proposed in literature

to mitigate the cited problem [2], four main categories have
been reported. Each class’ methods are distinguished by their
nature and strategy.

A. Data processing techniques
Working from the data perspective, the goal is to balance

the dataset through distinct forms of samples processing.
Over-sampling [3] duplicates tail class intances to increase
their representation, while in under-sampling [4] the number
of head examples is reduced. Both options have some
drawbacks related to overfitting risk and to the potential loss of
important information. Another processing technique is data
augmentation [5] that, following several designs from deep
learning generative oriented to more traditional ones, can be
used to generate synthetic samples for tail classes. However,
these artificially created samples may not always be realistic,
lacking the fidelity needed to capture the true characteristics
of the tail in real-world scenarios.

B. Cost-Sensitive Weighting
Cost-sensitive weighting methods assign different learning

weights to classes or to individual samples to prioritize
underrepresented categories. These approaches can be
implemented at class level [6], in which the re-weighting
strategy is typically based on inverse frequency of the classes,
ensuring so that tail examples receive more focus during
training. At instance level [7], weighting is instead applied
on a per-sample basis, allowing for finer-grained control over
the learning process. Even if these methods have shown some
promising results in addressing the unbalancing problem, they
are strongly related to both the dataset used and the considered
task. This implies the need for careful tuning, generally
leading to high resources cost and poor generalization.

C. Decoupling Methods
Decoupling methods [8] involve dividing the learning

process into two distinct stages. In the first phase, a
uniform sampling strategy is employed to learn general feature
representations without taking into consideration the long-
tailed problem. This helps avoiding model biases towards
head classes early in the training process. In the second
stage, class-balanced sampling is applied to ensure that the
model handles data imbalancing more effectively. Despite
their benefits and the increasing popularity in recent research,
these techniques are not end-to-end solutions, as they disrupt
the continuous flow of training in deep learning by introducing
two separate steps. Additionally, the class-balanced sampling
in the second stage presents similar challenges as the previous
other methods, such as potential overfitting and inefficiencies
in capturing the complexity of real-world data distributions.



D. Machine Learning-Based Methods
Machine learning-based methods often focus on leveraging

specialized architectures, training paradigms and their
combinations to better handle long-tailed data.

Fig. 2. Machine Learning-Based Methods

Metric learning [9] refines the feature space by mapping
data points to an embedding space where distances between
similar samples are minimized and those between dissimilar
ones are maximized. This approach clarifies decision
boundaries, particularly for tail classes, which typically suffer
from ambiguous boundaries.
Transfer learning [10] can also be used to exploit all the
knowledge acquired on head classes by a pre-trained model to
guide classification for the tail instances. This is done through
sharing model parameters across categories, resulting in the
mitigation of the lack of information about the less populated
classes.
Meta-learning [11] further extends this idea by training models
in order to generalize across tasks and adapt quickly to new
underrepresented labels using minimal data. This "learning
to learn" concept allows an efficient training being able to
transfer the classification capability for head classes to tail
ones.
Mixture-of-experts [12] is a concept based on training multiple
specialized networks, the "experts". Each one is responsible
for a subset of the data, focused on a specific region, where it
outperforms the others. This allow the model to better handle
the imbalance among the classes. However, when building
these architecture a critical part of the design is how to merge
all experts answers or a subset of them.
Knowledge distillation [13], in turn, involves a teacher model
with high performance guiding a simpler student model. The
latter one learns to mirror the master, progressively improving
its results. The goal is not just to have a smaller and better
performing network with the same knowledge as the teacher,
instead the outcome is supposed to be a more robust model,
which is more sensitive to the tails.
Grouping techniques [14] attempt to segment the dataset
into clusters and train the model separately on each group.
While this may alleviate some class imbalance issues, the
risk is to prevent the interaction of valuable knowledge across
different groups, which could undermine the model’s overall
performance.

III. METHODS

Considering that the final purpose of this work is to test
how different techniques perform on the long-tailed data
distribution, a few methods have been selected, each one based
on a different core idea and belonging to some of the defined
categories. In particular, [15] [16] [17] are machine-learning
based, while [18] falls into the data augmentations approaches.

A. Low-Rank Adaptation (LoRA)
In LoRA [15] the main intuition lies in learning low-rank

matrix decomposition of parameter sets as efficient LoRA
modules, while keeping original weights frozen.

Fig. 3. LoRA module

When added to transformer layers [1], it is able to tune
them efficiently, increasing performances on more specific
tasks, while reducing the number of trainable parameters and
preserving inference speed. This method is very suited for
low-resource tasks as it allows for efficient adaptation without
requiring extensive computational resources.

B. Bias-terms Fine-tuning (BitFit)
BitFit [16] is mainly about exposing knowledge already

present in the model rather than learning new task-specific
additional components. This is achieved by adjusting all the
bias terms of the model, or a subset of them, while keeping
other parameters frozen. This is another method solely relying
on parameter tuning efficiency.

C. Meta-Adapter
Meta-Adapter [17] is designed to facilitate online

adaptation with minimal examples. By taking a subset
of support images, it learns a better alignment through
cross-attention between the source and target feature
representations.

Fig. 4. Meta-Adapter module

This allows the extraction of valuable knowledge from few-



shot samples, using a meta-learning style approach.

D. Label preserving breaking data augmentation
This method [18] augments datasets leveraging generative

models capabilities, such as Stable Diffusion. Two types of
images are produced from the original source. The generative
process takes advantage of the diffusion model pipeline to
perform less noise injection steps for the ”label-preserving”
augmentations and more in the case of ”label-breaking” ones.
Label-preserving images maintain the semantics of existing
classes, while label-breaking ones introduce more diversity.
The first are used in the supervised task loss and the latter ones
are used to compute an additional term in an unsupervised
way, using the contrastive paradigm.

L = Ltask +λLlabel-breaking
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A memory bank of maximum length N is stored, caching
features of label breaking images. Original images and label
preserving images come with label information and contribute
to the Ltask. Label breaking images are sampled 2 at a time and
pushed close by the loss (x

′
j,x j), while being put in contrast to

the feature bank content.

IV. EXPERIMENTS

A. DATASETS
The tests are planned to be done on two different datasets:

Eurosat [19] and Circuits [18], with the latter being an example
of an extreme low-resource case.

Eurosat [19] is a dataset generally used as a benchmark for
deep learning application in tasks of land use or land cover
classification. It consists of satellite images divided into 10
classes of various environments varying between Vegetation
places, Crop Lands, buildings and water-related locations.
The size of this dataset is limited, but not restricted enough
to be considered low-resources as it contains 27,000 labeled
samples well balanced among the classes. This is still a
challenging benchmark due to the nature of satellite images.
Circuits is a newly presented dataset presented in [18]. The
dataset consists of circuit diagram images belonging to 32
different classes such as “Audio amplifier”, “Relay” etc.
The idea of it is to classify the schematics according to their
function. Circuit-diagrams can be definitely considered a
low-resource dataset, partially due to its nature and also given
that sample are few (∼ 1200). Another challenge present in
this dataset lies in the nature of its content. Tiny differences in
the electronic circuits representations could drastically change
their function and therefore class. Having different layouts for
the same operation might lead the model to overfit the specific
design.

B. EVALUATION METRICS
The evaluation is planned to be done on many different

metrics, in order to support out studies based mostly on failure
cases analysis, as well as class behaviours.

• Accuracy-related: top-1, top-1 per class, confusion
matrix.

• Visualizations: top-k correct predictions maximizing
similarity, top-k incorrect predictions maximizing
wrong-class similarity. Both settings are reproduced also
per class and the relative attention maps is available for
all visualizations.

• Clustering-based: 2D UMAP projection plots,
Silhouette score, Adjusted Rand Index (ARI), V-
measure. We consider as cluster assignments the model
predictions and the actual target labels.

• Improvements: comparison of pair-wise different model
settings, in which samples are wrongly classified by the
first model and correctly labeled in the second one. Top-k
couples are considered based on maximization of logits-
entropy difference. The idea is to show examples which
go through an important distribution shift with respect to
the two settings.

C. EARLY RESULTS
Example of early results are shown in Fig. 5 and 6.

Fig. 5. Improvements example:
Zero-shot CLIP vs LoRA on Eurosat

Fig. 6. Clustering-based example: BitFit on Eurosat

V. CONCLUSIONS

In this report we have first introduced the long-tailed
data distribution problem, then we categorized and exposed
some approaches attempting to mitigate those scenarios. To
conclude, in the context of future work, we went more in depth
in some architectures, particularly in the few-shot learning
setting.
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